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For both stock and currency markets, we study the return intervals
� between the daily volatilities of the price changes that are above
a certain threshold q. We find that the distribution function Pq(�)
scales with the mean return interval �� as Pq(�) � ���1f(����). The
scaling function f(x) is similar in form for all seven stocks and for
all seven currency databases analyzed, and f(x) is consistent with
a power-law form, f(x) � x�� with � � 2. We also quantify how the
conditional distribution Pq(���0) depends on the previous return
interval �0 and find that small (or large) return intervals are more
likely to be followed by small (or large) return intervals. This
‘‘clustering’’ of the volatility return intervals is a previously unrec-
ognized phenomenon that we relate to the long-term correlations
known to be present in the volatility.

econophysics � fluctuations � extreme values � long-term correlations �
long-term memory

The statistical properties of stock and currency market fluc-
tuations are of importance for modeling and understanding

complex market dynamics. They are also relevant for practical
applications such as risk estimation and portfolio optimization
(1). In particular, understanding the volatility f luctuations of
financial records is of particular importance, because they are
the key input of option pricing models, including the classic Black
and Scholes model and the Cox, Ross, and Rubinstein binomial
models that are based on estimates of the asset’s volatility during
the residual time of the option (2–4). Although the changes from
day i � 1 to day i, �pi � pi � pi�1, of both stock prices and
currency rates are uncorrelated, their absolute values (one
measure of volatility) are long-term power-law correlated (5–
17). Moreover, the probability density function (pdf) of �pi
scales as a power law (18) �(�p) � (�p)�(� � 1) with � � 3 (5,
19–21). Also, within t days after a crash, nq(t), the number of
times ��pi� exceeds a threshold q, follows a power-law relation
nq(t) � t�p with p � 1 (22), a behavior similar to the Omori
earthquake law.

Here, we are interested in the statistical properties of large
volatilities. A quantity that characterizes the occurrence of large
volatilities is the return interval � between two consecutive volatil-
ities above some large threshold q (Fig. 1). We study return intervals
because they are related to the rate of occurrence of volatilities that
exceed a threshold q (22). Because extreme volatilities are rare, we
consider also the return intervals between volatilities above inter-
mediate thresholds. By doing this, we hope to gain insight also into
the return intervals between very large volatilities that are too rare
to obtain with reasonable statistics.

We analyze the statistical properties of the daily return
intervals of seven representative stocks and currencies ob-
tained, respectively, from http:��finance.yahoo.com and www.
federalreserve.gov�releases�H10�hist. We choose to study
daily data records because there are intraday trends in the
volatility. We report two results:

(i) The pdf of the return intervals Pq(�) is not a function of the
two independent variables � and q but depends only on the scaled
parameter ����, where the q dependence is contained in the mean

return interval �� � ��(q). This scaling is important because it
allows us to extrapolate large q values, corresponding to rare
events, from the behavior at small q values and thereby collect
good statistics. We find that the scaled pdf can be well approx-
imated by the same power law for all seven stocks and for all
seven currencies studied. We also show that this power-law
behavior results from the known long-term correlations in the
volatility records.

(ii) A long-term memory exists in the return intervals, such
that short return intervals tend to be followed by short ones, and
long return intervals tend to be followed by long ones. This
‘‘clustering’’ of the volatility return intervals is a previously
unrecognized phenomenon that we relate to the long-term
correlations known to be present in the volatility.

Methods
We normalize the volatility records by dividing each value of ��pi�
by the standard deviation (	��pi�2
 � 	��pi�
2)1/2. In this way, the
thresholds q are in units of the standard deviation of the
volatility. Because we analyze daily records, we restrict ourselves
to those q values for which �� � 3 days to avoid spurious
discreteness effects.

We begin by studying the behavior of the pdf Pq(�) and how
it depends on the threshold parameter q (Fig. 2 a and b). For
different q, the pdfs are different and cannot be described by a
Poisson distribution as for uncorrelated data. Moreover, for
larger q, the decay of Pq(�) becomes slower.

To understand the q dependence, we show, in Fig. 2 c and d,
the scaled pdfs Pq(�)�� as functions of the scaled return intervals

Abbreviations: pdf, probability density function; S&P 500, Standard and Poor’s 500 Index;
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Fig. 1. Schematic illustration of volatility return intervals. Shown are the
return intervals �3 and �4 for two threshold values q � 3 and 4 (indicated by
arrows) for the normalized volatility ��pi��(	��pi�2
 � 	��pi�
2)1/2 of USD�JPY
currency exchange rates in the 3-year period 2000–2002.
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����; the evident data collapse to a single curve is consistent with
the scaling relation,

Pq
�� �
1
��

f ��

��� . [1]

We see that the scaling function f(x) does not depend explicitly
on q but only through �� � ��(q). Hence, if Pq(�) is known for
one value of q, Eq. 1 can make predictions for other values of
q: in particular, for very large q (rare events), which are
difficult to study because of the lack of data. The functional
form of the scaled pdf appears to be quite similar for all seven
stock records studied (Fig. 2e) and all seven currency data sets

studied (Fig. 2f ). As suggested by the straight lines with slope
�2 (Fig. 2 e and f ), f(x) for x � 1 is consistent with a power
law f(x) � x��, where � � 2 for both stock and currency data.
For very large x values, the data are also consistent with the
possibility that f(x) is a stretched exponential (see also ref. 23).
This result raises the possibility that there exists a ‘‘universal’’
scaling function for the return intervals of both stock and
currency volatility data.

For uncorrelated records, we expect that the return intervals
follow a Poisson distribution, yielding log f(x) � �x. To test this
expectation, we remove the long-term memory by shuffling the
volatility records, and we obtain a simple exponential (Fig. 2 g
and h). The distinct difference between the distributions of the

Fig. 2. Distribution of volatility return intervals. (a and b) Distribution function Pq(�) of the return intervals � of the volatility records of a typical stock, General Electric
(GE) (a), and a typical currency exchange database, USD vs. SEK (b), for five threshold values q. (c and d) Scaled plots where ��Pq(�) is plotted vs. ����. (e and f ) Scaled plots
for seven stocks (e) and currencies (f). Stocks are S&P 500, ■ ; IBM, F; DuPont, Œ; AT&T, �; Kodak, �; GE, Š; and Coca-Cola, ‹. Currencies are USD vs. JPY, ■ ; British pound
vs. Swiss franc, F; USD vs. SEK, Œ; Danish krone vs. Australian dollar, �; Danish krone vs. Norwegian krone, �; USD vs. Canadian dollar, Š; and USD vs. South African
dollar, ‹. The straight lines are for demonstration and have a slope of �2. The lower plots (open symbols) represent the scaled Pq(�)�� vs. ���� after shuffling the volatility
records, thereby removing the long-term correlations. The lower plots were divided by a factor of 10 [i.e., Pq(�)���10]. The open symbols represent the same stocks and
the same currencies as the corresponding filled symbols in e and f. (g and h) To test whether after shuffling the volatility record Pq(�) becomes a Poisson distribution,
we plot on a semilogarithmic scale the shuffled stock (g) and currencies (h) data. The linear plot shows the exponential form of a Poisson distribution.
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return intervals in the real data and in the uncorrelated shuffled
data suggests that the power-law behavior of the scaling function
f(x) must arise from the correlations in the volatility. Fig. 2 e and
f also show that very small and very large return intervals are
more frequent in the correlated records than in the shuffled
ones.

Next, we address the question of whether the distribution Pq(�)
fully characterizes the sequence of the return intervals. The
result depends on whether the return intervals are organized in
a correlated fashion. If they are uncorrelated, subsequent return
intervals are independent of each other and chosen randomly
from Pq(�). Accordingly, Pq(�) would fully characterize the data.
Fig. 3a shows a typical sequence of return intervals for IBM; Fig.
3b shows a typical shuffled sequence for IBM. One sees that Fig.
3 a and b look very different. Although in Fig. 3a there are
‘‘patches’’ of return intervals below and above their mean value,
there are no such patches for the shuffled records. The patches
are an indication of memory; i.e., short return intervals (below
average) tend to follow short intervals, and long ones (above
average) tend to follow long ones.

To quantify the effect of memory, we study the conditional pdf
Pq(���0) of return intervals � that immediately follow a return

Fig. 3. Visual demonstration of return interval clustering. (a) Sequence of
500 return intervals for IBM for years 1984–2004 (�5,000 days), where q � 1.5,
chosen so that the average return interval is 10 days (horizontal line). (b) Same
as a, except that the original volatility returns are shuffled.

Fig. 4. Scaling and memory in distributions of volatility return intervals. Shown is the conditional distribution function Pq(���0) of the return intervals � of the
volatility records of the daily S&P 500 (a), IBM stock (b), USD�JPY exchange rate (c), and USD�SEK exchange rate (d) for �0 in Q1 (filled symbols) and Q8 (open
symbols) vs. ����. The lines provide a guide for the eye.
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interval �0. In records without memory, Pq(���0) does not depend
on �0 and is identical to Pq(�). In records with long-term memory,
we expect a pronounced dependence (23). To search for these
kinds of memory effects in the (relatively) short data sets
analyzed here, we study Pq(���0) not for a specific value of �0 but
for a range of �0 values. For this purpose, we sort the full data
set of N return intervals in increasing order and divide it into
eight subsets, Q1, Q2,. . ., Q8, such that each subset contains
one-eighth of the total number of return intervals. By this
definition, the N�8 lowest return intervals are in Q1, whereas the
largest N�8 intervals are in Q8. Fig. 4 a and b show, for the
Standard and Poor’s 500 Index (S&P 500) and for IBM stocks,
Pq(���0) for �0 in Q1 and Q8. The same quantities are studied in
Fig. 4 c and d for the Japanese yen (JPY)�U.S. dollar (USD)
exchange rate and the Swedish krona (SEK)�USD exchange
rate. The results show that for �0 in Q1, the probability of finding
� below (or above) �� is enhanced (or decreased) when compared
with Pq(�), whereas the opposite occurs for �0 in Q8. We note
that, for the range of q studied, the data collapse onto a single
scaling function for both Q1 and Q8.

Results and Discussion
This memory effect in the conditional distribution function
Pq(���0) leads to a pronounced memory effect in the mean
conditional return interval �̂(�0), which is the mean of those
return intervals that immediately follow �0. By definition, �̂(�0)
is the first moment of Pq(���0). Fig. 5 presents �̂(�0)��� as a
function of �0��� and shows clearly the effect of memory. Because
small (or large) return intervals are more likely to be followed
by small (or large) intervals, �̂(�0)��� is well below (or above)
unity for �0��� well below (or above) unity.

Thus, the statistics of the return intervals � strongly depend
on the preceding return interval �0. We ask whether this
memory is limited only to nearest-neighbor return intervals or
whether there exists long-term memory in the return interval
time series. To answer this question, we use detrended f luc-
tuation analysis (DFA) to test for the presence of long-term
correlations in � (24). DFA calculates the rms f luctuation F(�)
of a time series within a window of � days and determines the
exponent � from the scaling relation F(�) � ��. When � � 1�2,
the time series is long-term correlated; when � � 1�2, it is

Fig. 5. Scaling and memory in mean return intervals. Shown is the mean conditional return interval �̂(�0) divided by �� vs. �0��� of the volatility records for the
daily S&P 500 (a), IBM stock (b), USD�JPY exchange rate (c), and USD�SEK exchange rate (d). For records without memory, we expect �̂(�0)���� 1, as supported
by the open symbols obtained for volatility shuffled records.
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uncorrelated. Fig. 6a shows the values of � for the volatility
data, in agreement with refs. 5–17; Fig. 6b shows the corre-
sponding analysis for the return interval data. The exponents
� obtained for the return intervals are usually smaller than
those for the corresponding volatilities. However, they are
within the error bars of each other. Thus, we cannot rule out
that the � values are the same for both volatility and return

intervals (see also ref. 23). We note that � � 1�2 for all 14
databases studied, indicating the existence of long-term cor-
relations in the return interval data. Further, we see that when
the volatility records of each database are shuff led, the
long-term correlation is removed, and � � 0.5.

These findings quantify a previously unrecognized charac-
terization, return interval clustering, of the known effect of
volatility clustering (7, 25–27). Lillo and Mantegna (22) re-
cently found that after a crash, the return intervals tend to
cluster and decay as a power law, similar to the Omori law for
earthquakes. Our results suggest that there is an analogous
clustering not limited to data recorded after a crash and that
the return intervals exhibit a scaling form that appears to be
universal.

In summary, we have studied scaling and memory effects in
return intervals for stock and currency data. We find that the
distribution functions of return intervals can be well approxi-
mated by a single scaling function that depends only on the ratio
���� and differs from the Poisson distribution for uncorrelated
events. We also find strong memory effects such that a small
return interval is more likely to be followed by a small interval,
and a large interval is more likely to be followed by a large
interval, which is reflected by the fact that the mean conditional
return interval �̂(�0) increases monotonically with�0. We showed
that the origin of these phenomena is the long-term memory of
the volatility.

1. Bouchaud, J.-P. & Potters, M. (2003) Theory of Financial Risk and Derivative
Pricing: From Statistical Physics to Risk Management (Cambridge Univ. Press,
Cambridge, U.K.).

2. Black, F. & Scholes, M. (1973) J. Polit. Econ. 81, 637–654.
3. Cox, J. C. & Ross, S. A. (1976) J. Financial Econ. 3, 145–166.
4. Cox, J. C., Ross, S. A. & Rubinstein, M. (1979) J. Financial Econ. 7, 229–263.
5. Liu, Y., Gopikrishnan, P., Cizeau, P., Meyer, M., Peng, C. & Stanley, H. E.

(1999) Phys. Rev. E 60, 1390–1400.
6. Pagan, A. (1996) J. Empir. Finance 3, 15–102.
7. Ding, Z., Granger, C. W. J. & Engle, R. F. (1983) J. Empir. Finance 1, 83–106.
8. Dacorogna, M. M., Muller, U. A., Nagler, R. J., Olsen, R. B. & Pictet, O. V.

(1993) J. Int. Money and Finance 12, 413–438.
9. Ord, J. K., Wood, R. A. & McInish, T. H. (1985) J. Finance 40, 723–739.

10. Harris, L. (1986) J. Financial Econ. 16, 99–117.
11. Admati, A. & Pfleiderer, P. (1988) Rev. Financial Stud. 1, 3–40.
12. Granger, C. W. J. & Ding, Z. (1996) J. Econometrics 73, 61–77.
13. Bollerslev, T., Chou, R. Y. & Kroner, K. F. (1992) J. Econometrics 52, 5–59.
14. Schwert, G. W. (1989) J. Finance 44, 1115–1153.
15. Gallant, A. R., Rossi, P. E. & Tauchen, G. (1992) Rev. Financial Stud. 5,

199–242.
16. Le Baron, B. (1992) J. Business 65, 199–219.

17. Chan, K., Chan, K. C. & Karolyi, G. A. (1991) Rev. Financial Stud. 4, 657–684.
18. Mandelbrot, B. B. (1963) J. Business 36, 394–419.
19. Gopikrishnan, P., Plerou, V., Amaral, L. A. N., Meyer, M. & Stanley, H. E.

(1999) Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 60, 5305–5315.
20. Mantegna, R. & Stanley, H. E. (2000) Introduction to Econophysics: Correla-

tions and Complexity in Finance (Cambridge Univ. Press, Cambridge, U.K.).
21. Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H. E. (2003) Nature 423,

267–270.
22. Lillo, F. & Mantegna, R. N. (2003) Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

68, 016119.
23. Bunde, A., Eichner, J. F., Kantelhardt, W. & Havlin, S. (2005) Phys. Rev. Lett.

99, 048201.
24. Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E. &

Goldberger, A. L. (1994) Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 6849,
1685–1689.

25. Giardina, I., Bouchaud, J.-P. & Mezard, M. (2001) Physica A 299, 28–39.
26. Lux, T. & Marchesi, M. (2000) Int. J. Theor. Appl. Finance 3, 675–703.
27. Lux, T. & Ausloos, M. (2002) in The Science of Disasters: Climate Disruptions,

Heart Attacks, and Market Crashes, eds. Bunde, A., Kropp, J. & Schellnhuber,
H. J. (Springer, Berlin), pp. 373–409.

Fig. 6. Long-term memory in volatility records. Shown is the detrended
fluctuation analysis fluctuation exponent � for the seven stocks (databases
1–7) and seven currencies (databases 8–14) (in the same order as they appear
in the legend of Fig. 3) analyzed for volatility (a) and return interval (b)
records. The filled symbols represent � values for the actual data; the open
symbols represent the � values for the corresponding shuffled volatility data.
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